Title of article :
A Framework for Authorship Identification of Online Messages: Writing-Style Features and Classification Techniques
Author/Authors :
Rong Zheng، نويسنده , , Jiexun Li، نويسنده , , Hsinchun Chen، نويسنده , , Zan Huang، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 2006
Pages :
16
From page :
378
To page :
393
Abstract :
With the rapid proliferation of Internet technologies and applications, misuse of online messages for inappropriate or illegal purposes has become a major concern for society. The anonymous nature of online-message distribution makes identity tracing a critical problem. We developed a framework for authorship identification of online messages to address the identity-tracing problem. In this framework, four types of writing-style features (lexical, syntactic, structural, and content-specific features) are extracted and inductive learning algorithms are used to build feature-based classification models to identify authorship of online messages. To examine this framework, we conducted experiments on English and Chinese online-newsgroup messages. We compared the discriminating power of the four types of features and of three classification techniques: decision trees, backpropagation neural networks, and support vector machines. The experimental results showed that the proposed approach was able to identify authors of online messages with satisfactory accuracy of 70 to 95%. All four types of message features contributed to discriminating authors of online messages. Support vector machines outperformed the other two classification techniques in our experiments. The high performance we achieved for both the English and Chinese datasets showed the potential of this approach in a multiplelanguage context.
Journal title :
Journal of the American Society for Information Science and Technology
Serial Year :
2006
Journal title :
Journal of the American Society for Information Science and Technology
Record number :
844074
Link To Document :
بازگشت