Title of article :
Estimating the precipitation potential in urine-collecting systems
Author/Authors :
Gujer، Willi نويسنده , , Larsen، Tove A. نويسنده , , Udert، Kai M. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Precipitation in urine-separating toilets (NoMix toilets) and waterless urinals causes severe maintenance problems and can strongly reduce the content of soluble phosphate. In this study, we present a computer model for estimating the precipitation potential (PP) in urine-collecting systems. Calculating the PP enables to predict the composition and mass concentration of precipitates. We used our computer model for investigating how urea hydrolysis and dilution with flushing water affect precipitation. In a previous study, we found that microbial urea hydrolysis (ureolysis) triggers precipitation and that the amount of precipitates is limited by calcium and magnesium. With the present simulations, we could confirm these findings. We determined that only a small fraction of urea has to be hydrolysed for reaching 95% of the maximum PP. Since ureasepositive bacteria are abundant in urine-collecting systems, strong precipitation is very likely. In further simulations, we determined that struvite (MgNH4PO4·6H2O) and hydroxyapatite (HAP, Ca10(PO4)6(OH)2) are the main precipitate compounds. If urine is highly diluted with tapwater, calcite (CaCO3) occurs as well. HAP is the only calcium phosphate mineral, although several others were supersaturated. Additionally, the simulations indicated that urine dilution diminishes the risk of blockages, since the mass concentration of precipitates decreases with the volume of flushing water. Rainwater flushing is more effective than flushing with tapwater. Moreover, flushing with tapwater leads to high phosphate fixation, because the total amount of calcium and magnesium ions increases, while the total amount of phosphate keeps constant. Finally, we compared simulation results with field measurements and found good agreement at low and very high urine dilution.
Keywords :
Urine separation , Pipe blockage , Precipitation potential , Hydroxyapatite , Struvite , Ureolysis
Journal title :
Water Research
Journal title :
Water Research