Title of article :
Convex Polynomial Approximation in Lp (0 < p < 1) Original Research Article
Author/Authors :
R.A. Devore، نويسنده , , S. Dekel and D. Leviatan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1993
Abstract :
We prove that for each convex function ƒ ∈ Lp, 0 < p < 1, there exists a convex algebraic polynomial Pn of degree ≤n such that [formula] where ωφ2(ƒ, t)p is the Ditzian-Totik modulus of smoothness of ƒ in Lp, and C depends only on p. Moreover, if ƒ is also nondecreasing, then the polynomial Pn can also be taken to be nondecreasing, thus we have simultaneous monotone and convex approximation in this case.
Journal title :
Journal of Approximation Theory
Journal title :
Journal of Approximation Theory