Title of article :
The Weighted Lp-Norms of Orthonormal Polynomials for Freud Weights Original Research Article
Author/Authors :
D.S. Lubinsky، نويسنده , , F. Moricz، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
9
From page :
42
To page :
50
Abstract :
Let W≔ e−Q, where Q: R → R is even, continuous in R, Q" is continuous in (0, ∞), and Q′ > 0 in (0, ∞), while for some A, B > 1, [formula]. For example, W(x) = exp(−|x|α), α > 1, satisfies these hypotheses. Let pn(W2, x) denote the nth orthonormal polynomial for the weight W2, n ≥ 1, and let an = an(Q) denote the nth Mhaskar-Rahmanov-Saff number for Q. We show that for 0 < p < ∞, and n ≥ 2, [formula] The results are based on bounds for pn(W2,·) established recently by A. L. Levin and one of the authors.
Journal title :
Journal of Approximation Theory
Serial Year :
1994
Journal title :
Journal of Approximation Theory
Record number :
851135
Link To Document :
بازگشت