Title of article :
Local Convergence of Lagrange Interpolation Associated with Equidistant Nodes Original Research Article
Author/Authors :
X. Li، نويسنده , , E.B. Saff، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
13
From page :
213
To page :
225
Abstract :
Under the assumption that the function ƒ is bounded on [−1, 1] and analytic at x = 0 we prove the local convergence of Lagrange interpolating polynomials of ƒ associated with equidistant nodes on [- 1, 1]. The classical results concerning the convergence of such interpolants assume the stronger condition that ƒ is analytic on [−1, 1]. A de Montessus de Ballore type theorem for interpolating rationals associated with equidistant nodes is also established without assuming the global analyticity of ƒ on [−1, 1].
Journal title :
Journal of Approximation Theory
Serial Year :
1994
Journal title :
Journal of Approximation Theory
Record number :
851175
Link To Document :
بازگشت