Title of article :
Bounds for Lebesgue Functions for Freud Weights Original Research Article
Author/Authors :
D.M. Matjila، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1994
Pages :
22
From page :
385
To page :
406
Abstract :
Let W(x) ≔ e−Q(x), x ∈ R, where Q(x) is even and continuous in R, Q″ is continuous in (0, ∞), and Q′ > 0 in (0, ∞), while for some A, B > 1, [formula]. Let pn(W2, x) denote the nth orthonormal polynomial for the weight W2(x), xkn(W2) the kth zero of pn(W2, x), and lkn(x) the fundamental polynomials. Moreover let an denote the nth Mhaskar-Rahmanov-Saff number for Q and let σ ∈ (0, 1). Then we show that the nth weighted Lebesgue function satisfies uniformly for |x| ≤ σan, [formula]∼ (1 + |x|)−α + √an|Pn(W2, x){(1 + |x|)−αlogn + (1 + |x|)−α̂},≤C{(1 + |x|)−α log n + (1 + |x|)−α̂}, where α ≥ 0 and α̂≔ min{1, α}. We also modify this result to the whole real line.
Journal title :
Journal of Approximation Theory
Serial Year :
1994
Journal title :
Journal of Approximation Theory
Record number :
851226
Link To Document :
بازگشت