Title of article :
Optimal Approximation of Periodic Analytic Functions with Integrable Boundary Values
Author/Authors :
Klaus Wilderotter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1996
Pages :
11
From page :
236
To page :
246
Abstract :
LetS=[z∈C: |Im(z)|<β] be a strip in the complex plane.Hq, 1⩽q<∞, denotes the space of functions, which are analytic and 2π-periodic inS, real-valued on the real axis, and possessq-integrable boundary values. Letμbe a positive measure on [0, 2π] andLp(μ) be the corresponding Lebesgue space of periodic real-valued functions on the real axis. The even dimensional Kolmogorov, Gelʹfand, and linear widths of the unit ball ofHqinLp(μ) are determined exactly, when 1⩽p⩽q<∞ or when=q
Journal title :
Journal of Approximation Theory
Serial Year :
1996
Journal title :
Journal of Approximation Theory
Record number :
851368
بازگشت