Title of article :
Accuracy of Lattice Translates of Several Multidimensional Refinable Functions Original Research Article
Author/Authors :
Carlos Cabrelli and Ursula M. Molter، نويسنده , , Christopher Heil، نويسنده , , Douglas Hardin and Ursula Molter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
48
From page :
5
To page :
52
Abstract :
Complex-valued functionsf1, …, fronRdarerefinableif they are linear combinations of finitely many of the rescaled and translated functionsfi(Ax−k), where the translateskare taken along a latticeΓ⊂RdandAis adilation matrixthat expansively mapsΓinto itself. Refinable functions satisfy arefinement equationf(x)=∑k∈Λ ckf(Ax−k), whereΛis a finite subset ofΓ, theckarer×rmatrices, andf(x)=(f1(x), …, fr(x))T. Theaccuracyoffis the highest degreepsuch that all multivariate polynomialsqwith degree(q)
Keywords :
* Accuracy , * approximation by translates , * dilation equations , * dilation matrix , * multidimensional refinable functions , * multidimensional wavelets , * refinable functions , * shift invariant spaces , * multiwavelets , * refinement equations , * wavelets
Journal title :
Journal of Approximation Theory
Serial Year :
1998
Journal title :
Journal of Approximation Theory
Record number :
851621
بازگشت