Title of article :
Rate of Convergence of the Linear Discrete Pólya 1-Algorithm Original Research Article
Author/Authors :
J.M. Quesada Gomez، نويسنده , , J. Martinez-Moreno، نويسنده , , J. Navas، نويسنده , , J. Fern?ndez-Ochoa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
14
From page :
316
To page :
329
Abstract :
In this paper, we consider the problem of best approximation in ℓp(n), 1⩽p⩽∞. If hp, 1⩽p⩽∞, denotes the best ℓp-approximation of the element h∈Rn from a proper affine subspace K of Rn, h∉K, then limp→1hp=h1*, where h1* is a best ℓ1-approximation of h from K, the so-called natural ℓ1-approximation. Our aim is to give a complete description of the rate of convergence of hp to h1* as p→1.
Keywords :
best approximation , natural approximation , rate of convergence , P?lya algorithm.
Journal title :
Journal of Approximation Theory
Serial Year :
2002
Journal title :
Journal of Approximation Theory
Record number :
852075
Link To Document :
بازگشت