Title of article :
The Szegő condition for Coulomb Jacobi matrices Original Research Article
Author/Authors :
Andrej Zlato?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
A Jacobi matrix with an→1, bn→0 and spectral measure ν′(x) dx+dνsing(x) satisfies the Szegő condition if∫0πln[ν′(2 cos θ)] dθis finite. We prove that ifan≡1+αn+O(n−1−ε), bn≡βn+O(n−1−ε)with 2α⩾|β| and ε>0, then the corresponding matrix is Szegő.
Keywords :
Szeg? condition , Jacobi matrix , Coulomb perturbations
Journal title :
Journal of Approximation Theory
Journal title :
Journal of Approximation Theory