Title of article :
Entropy numbers of Sobolev embeddings of radial Besov spaces Original Research Article
Author/Authors :
Let RBp، نويسنده , , qs(Rn) be the radial subspace of the Besov space Bp، نويسنده , , qs(Rn). We prove the independence of the asymptotic behavior of the entropy numbersek(id : RBp0، نويسنده , , q0s0(Rn)?RBp1، نويسنده , , q1s1(Rn))from the difference s0?s1 as long as the embedding itself RBp0، نويسنده , , q0s0(Rn)?RBp1، نويسنده , , q1s1(Rn) is compact. In fact، نويسنده , , we shall show thatek(id : RBp0، نويسنده , , q0s0(Rn)?RBp1، نويسنده , , q1s1(Rn))?k?n(1p0?1p1).This is in a certain contrast to earlier results on entropy numbers in the context of Besov spaces Bp، نويسنده , , qs(?) on bounded domains ?.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
25
From page :
244
To page :
268
Abstract :
Let RBp,qs(Rn) be the radial subspace of the Besov space Bp,qs(Rn). We prove the independence of the asymptotic behavior of the entropy numbersek(id : RBp0,q0s0(Rn)↦RBp1,q1s1(Rn))from the difference s0−s1 as long as the embedding itself RBp0,q0s0(Rn)↪RBp1,q1s1(Rn) is compact. In fact, we shall show thatek(id : RBp0,q0s0(Rn)↦RBp1,q1s1(Rn))∼k−n(1p0−1p1).This is in a certain contrast to earlier results on entropy numbers in the context of Besov spaces Bp,qs(Ω) on bounded domains Ω.
Keywords :
Radial spaces , Weighted spaces , Traces , Entropy numbers , Compact embeddings , Atomic decompositions
Journal title :
Journal of Approximation Theory
Serial Year :
2003
Journal title :
Journal of Approximation Theory
Record number :
852122
Link To Document :
بازگشت