Title of article :
Bounds on Turán determinants Original Research Article
Author/Authors :
Christian Berg، نويسنده , , Ryszard Szwarc، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
15
From page :
127
To page :
141
Abstract :
Let μμ denote a symmetric probability measure on [−1,1][−1,1] and let (pn)(pn) be the corresponding orthogonal polynomials normalized such that pn(1)=1pn(1)=1. We prove that the normalized Turán determinant Δn(x)/(1−x2)Δn(x)/(1−x2), where View the MathML sourceΔn=pn2−pn−1pn+1, is a Turán determinant of order n−1n−1 for orthogonal polynomials with respect to View the MathML source(1−x2)dμ(x). We use this to prove lower and upper bounds for the normalized Turán determinant in the interval −1
Keywords :
Tur?n determinants , ultraspherical polynomials
Journal title :
Journal of Approximation Theory
Serial Year :
2009
Journal title :
Journal of Approximation Theory
Record number :
852689
بازگشت