Title of article :
Operators associated with the Jacobi semigroup Original Research Article
Author/Authors :
Iris A. L?pez P، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
The aim of this paper is to introduce some operators induced by the Jacobi differential operator and associated with the Jacobi semigroup, where the Jacobi measure is considered in the multidimensional case.
In this context, we introduce potential operators, fractional integrals, fractional derivates, Bessel potentials and give a version of Carleson measures.
We establish a version of Meyer’s multiplier theorem and by means of this theorem, we study fractional integrals and fractional derivates.
Potential spaces related to Jacobi expansions are introduced and using fractional derivates, we give a characterization of these spaces. A version of Calderon’s Reproduction Formula and a version of Fefferman’s theorem are given.
Finally, we present a definition of Triebel–Lizorkin spaces and Besov spaces in the Jacobi setting.
Keywords :
Carleson measure , Triebel–Lizorkin spaces , Jacobi expansions , Potential spaces , Fractional integral , Meyer’s multiplier theorem , Besov spaces , Fractional derivate
Journal title :
Journal of Approximation Theory
Journal title :
Journal of Approximation Theory