Title of article :
Optimal adaptive computations in the Jaffard algebra and localized frames Original Research Article
Author/Authors :
Stephan Dahlke، نويسنده , , Massimo Fornasier، نويسنده , , Karlheinz Gr?chenig، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We study the numerical solution of infinite matrix equations View the MathML sourceAu=f for a matrix View the MathML sourceA in the Jaffard algebra. These matrices appear naturally via frame discretizations in many applications such as Gabor analysis, sampling theory, and quasi-diagonalization of pseudo-differential operators in the weighted Sjöstrand class. The proposed algorithm has two main features: firstly, it converges to the solution with quasi-optimal order and complexity with respect to classes of localized vectors; secondly, in addition to ℓ2ℓ2-convergence, the algorithm converges automatically in some stronger norms of weighted ℓpℓp-spaces. As an application we approximate the canonical dual frame of a localized frame and show that this approximation is again a frame, and even an atomic decomposition for a class of associated Banach spaces. The main tools are taken from adaptive algorithms, from the theory of localized frames, and the special Banach algebra properties of the Jaffard algebra.
Keywords :
Adaptive scheme , Jaffard algebra , Frames in Banach spaces , best approximation , Localization of frames , Sparse matrix
Journal title :
Journal of Approximation Theory
Journal title :
Journal of Approximation Theory