Title of article :
Approximation by quasi-projection operators in Besov spaces Original Research Article
Author/Authors :
Rong-Qing Jia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
15
From page :
186
To page :
200
Abstract :
In this paper, we investigate approximation of quasi-projection operators in Besov spaces View the MathML sourceBp,qμ, μ>0μ>0, 1≤p,q≤∞1≤p,q≤∞. Suppose II is a countable index set. Let (ϕi)i∈I(ϕi)i∈I be a family of functions in Lp(Rs)Lp(Rs), and let View the MathML source(ϕ̃i)i∈I be a family of functions in View the MathML sourceLp̃(Rs), where View the MathML source1/p+1/p̃=1. Let QQ be the quasi-projection operator given by View the MathML sourceQf=∑i∈I〈f,ϕ̃i〉ϕi,f∈Lp(Rs). Turn MathJax on For h>0h>0, by σhσh we denote the scaling operator given by σhf(x):=f(x/h)σhf(x):=f(x/h), x∈Rsx∈Rs. Let Qh:=σhQσ1/hQh:=σhQσ1/h. Under some mild conditions on the functions ϕiϕi and View the MathML sourceϕ̃i (i∈Ii∈I), we establish the following result: If 0<μ<ν0h>0, where CC is a constant independent of hh and ff. Density of quasi-projection operators in Besov spaces is also discussed.
Keywords :
quasi-interpolation , Besov spaces , Quasi-projection , Sobolev spaces , Approximation order , Moduli of smoothness
Journal title :
Journal of Approximation Theory
Serial Year :
2010
Journal title :
Journal of Approximation Theory
Record number :
852740
Link To Document :
بازگشت