Title of article :
Orthogonal polynomials and Padé approximants for reciprocal polynomial weights Original Research Article
Author/Authors :
D.S. Lubinsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
5
From page :
298
To page :
302
Abstract :
Let ΓΓ be a closed oriented contour on the Riemann sphere. Let EE and FF be polynomials of degree n+1n+1, with zeros respectively on the positive and negative sides of ΓΓ. We compute the [n/n][n/n] and [n−1/n][n−1/n] Padé denominators at ∞∞ to View the MathML sourcef(z)=∫Γ1z−tdtE(t)F(t). Turn MathJax on As a consequence, we compute the nnth orthogonal polynomial for the weight 1/(EF)1/(EF). In particular, when ΓΓ is the unit circle, this leads to an explicit formula for the Hermitian orthogonal polynomial of degree nn for the weight 1/|F|21/|F|2. This complements the classical Bernstein–Szegő formula for the orthogonal polynomials of degree ≥n+1≥n+1.
Keywords :
Padé approximant , de Branges space , Reproducing kernel , orthogonal polynomials , Bernstein–Szeg? formula
Journal title :
Journal of Approximation Theory
Serial Year :
2010
Journal title :
Journal of Approximation Theory
Record number :
852745
Link To Document :
بازگشت