Title of article :
On a conjecture for trigonometric sums and starlike functions, II Original Research Article
Author/Authors :
Stamatis Koumandos، نويسنده , , Martin Lamprecht، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We prove the case View the MathML sourceρ=14 of the following conjecture of Koumandos and Ruscheweyh: let View the MathML sourcesnμ(z)≔∑k=0n(μ)kk!zk, and for ρ∈(0,1]ρ∈(0,1] let μ∗(ρ)μ∗(ρ) be the unique solution of
View the MathML source∫0(ρ+1)πsin(t−ρπ)tμ−1dt=0
Turn MathJax on
in (0,1](0,1]. Then we have View the MathML source|arg[(1−z)ρsnμ(z)]|≤ρπ/2 for 0<μ≤μ∗(ρ)0<μ≤μ∗(ρ), n∈Nn∈N and zz in the unit disk of CC and μ∗(ρ)μ∗(ρ) is the largest number with this property. For the proof of this other new results are required that are of independent interest. For instance, we find the best possible lower bound μ0μ0 such that the derivative of View the MathML sourcex−Γ(x+μ)Γ(x+1)x2−μ is completely monotonic on (0,∞)(0,∞) for μ0≤μ<1μ0≤μ<1.
Keywords :
inequalities , Starlike functions , Gegenbauer polynomials , Subordination , Completely monotonic functions , Gamma and psi functions , Positive trigonometric sums
Journal title :
Journal of Approximation Theory
Journal title :
Journal of Approximation Theory