Title of article :
LeVeque type inequalities and discrepancy estimates for minimal energy configurations on spheres Original Research Article
Author/Authors :
F.J. Narcowich، نويسنده , , X. Sun، نويسنده , , J.D. Ward، نويسنده , , Z. Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
23
From page :
1256
To page :
1278
Abstract :
Let SdSd denote the unit sphere in the Euclidean space View the MathML sourceRd+1(d≥1). We develop LeVeque type inequalities for the discrepancy between the rotationally invariant probability measure and the normalized counting measures on SdSd. We obtain both upper bound and lower bound estimates. We then use these inequalities to estimate the discrepancy of the normalized counting measures associated with minimal energy configurations on SdSd
Keywords :
LeVeque type inequalities , Discrepancy , Minimal energy , spherical harmonics
Journal title :
Journal of Approximation Theory
Serial Year :
2010
Journal title :
Journal of Approximation Theory
Record number :
852800
Link To Document :
بازگشت