Title of article :
Monte Carlo modeling of spin FETs controlled by spin–orbit interaction Original Research Article
Author/Authors :
Min Shen، نويسنده , , Semion Saikin، نويسنده , , Ming-C. Cheng، نويسنده , , Vladimir Privman، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
13
From page :
351
To page :
363
Abstract :
A method for Monte Carlo simulation of 2D spin-polarized electron transport in III–V semiconductor heterojunction (FETs) is presented. In the simulation, the dynamics of the electrons in coordinate and momentum space is treated semiclassically. The density matrix description of the spin is incorporated in the Monte Carlo method to account for the spin polarization dynamics. The spin–orbit interaction in the spin FET leads to both coherent evolution and dephasing of the electron spin polarization. Spin-independent scattering mechanisms, including optical phonons, acoustic phonons and ionized impurities, are implemented in the simulation. The electric field is determined self-consistently from the charge distribution resulting from the electron motion. Description of the Monte Carlo scheme is given and simulation results are reported for temperatures in the range 77–300 K.
Keywords :
Spin orbit , Monte Carlo , FET , Spintronics
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2004
Journal title :
Mathematics and Computers in Simulation
Record number :
854177
Link To Document :
بازگشت