Title of article :
Error growth in the numerical integration of periodic orbits Original Research Article
Author/Authors :
M. Calvo، نويسنده , , M.P. Laburta، نويسنده , , J.I. Montijano، نويسنده , , L. R?ndez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
16
From page :
2646
To page :
2661
Abstract :
This paper is concerned with the long term behaviour of the error generated by one step methods in the numerical integration of periodic flows. Assuming numerical methods where the global error possesses an asymptotic expansion and a periodic flow with the period depending smoothly on the starting point, some conditions that ensure an asymptotically linear growth of the error with the number of periods are given. A study of the error growth of first integrals is also carried out. The error behaviour of Runge–Kutta methods implemented with fixed or variable step size with a smooth step size function, with a projection technique on the invariants of the problem is considered.
Keywords :
Geometric integration , Runge–Kutta methods , Invariant preservation , Long-time integration
Journal title :
Mathematics and Computers in Simulation
Serial Year :
2011
Journal title :
Mathematics and Computers in Simulation
Record number :
855182
Link To Document :
بازگشت