Title of article :
On some modification Navier–Stokes equations Original Research Article
Author/Authors :
K.N. Soltanov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
25
From page :
769
To page :
793
Abstract :
This article investigates some modification of the Navier–Stokes equations of type as the modification that was suggested by Lions (Quelques Methodes de Resolution des Problemes aux Limites Non Lineares, DUNOD, Gauthier-Villaris, Paris, 1969) in the form View the MathML source divu=0,(t,x)∈Q≡(0,T)×Ω,T>0,μ>0, View the MathML source under View the MathML source. In this we prove the existence theorem for the different pi⩾max{2,3−2/n} and, on some additional conditions (i.e. of the pi=p⩾4) in the isotropic nonlinearity case, we prove the uniqueness theorem for the considered problem.
Keywords :
Navier–Stokes equations , Embedding theorems , Anisotropical Sobolev spaces , uniqueness theorem , Solvability theorem , pn-spaces , Galerkin method , Banach spaces , Weakly continuous operator
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2003
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858222
Link To Document :
بازگشت