Title of article :
Lie point symmetries and exact solutions of quasilinear differential equations with critical exponents Original Research Article
Author/Authors :
Yuri Bozhkov، نويسنده , , Antonio Carlos Gilli Martins، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
21
From page :
773
To page :
793
Abstract :
We consider a general class of quasilinear ordinary differential equations which contains, in particular, the Lane–Emden equation, the Liouville equation, the Poisson–Boltzmann equation, equations involving the radial forms of the Laplace, p-Laplace and the k-Hessian operators. The Lie point symmetry group of these equations is calculated. Then the corresponding Noether symmetries are found and used to obtain first integrals and exact solutions of the equations with critical exponents.
Keywords :
Lie point symmetry , Critical exponents
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2004
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858614
Link To Document :
بازگشت