Title of article :
Asymptotic spatial homogeneity in periodic quasimonotone reaction–diffusion systems with a first integral Original Research Article
Author/Authors :
Mats Gyllenberg، نويسنده , , Yi Wang، نويسنده , , Jifa Jiang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
10
From page :
235
To page :
244
Abstract :
The asymptotic spatial homogeneity of nonnegative solutions to a ττ-periodic quasimonotone reaction–diffusion-type initial-boundary value problem is established, provided the system possesses a first integral. The infinite-dimensional dynamical system generated by the system of PDEs is monotone but not strongly monotone. Results combining simple monotonicity with infinite dimensionality have not appeared in the literature. We apply our result to a cooperative Lotka–Volterra system with spatial diffusion.
Keywords :
Monotonicity , First integral , Diffusion-reaction
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2004
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858700
Link To Document :
بازگشت