Title of article :
Study of a model for the equations of inserted elastic string in a thermal environment
Original Research Article
Author/Authors :
Milton de L. Oliveira، نويسنده , , Frederico de O. Matias، نويسنده , , Joaquim R. Feitosa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
In this paper we prove the uniqueness and existence of global solutions for a coupled thermal-Kirchhoff system with Newmann boundary conditions and we show that the solution decomposes into two parts, one of them decays exponentially to zero as time goes to infinity; that is, by denoting E(t)E(t) as the first-order energy of the system, we show that the positive constants CC and γγ exist which satisfy
E(t)⩽CE(0)e-γt.E(t)⩽CE(0)e-γt.
Turn MathJax on
Keywords :
existence of solutions , Neumann boundary conditions , exponential decay , Kirchhoff equation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications