Title of article :
Global behavior of positive solutions of nonlinear three-point boundary value problems Original Research Article
Author/Authors :
Ruyun Ma، نويسنده , , Bevan Thompson، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
17
From page :
685
To page :
701
Abstract :
We investigate the structure of the positive solution set for nonlinear three-point boundary value problems of the form View the MathML sourceu″+h(t)f(u)=0,u(0)=0,u(1)=λu(η), Turn MathJax on where η∈(0,1)η∈(0,1) is given, View the MathML sourceλ∈[0,1η) is a parameter, f∈C([0,∞),[0,∞))f∈C([0,∞),[0,∞)) satisfies f(s)>0f(s)>0 for s>0s>0, and h∈C([0,1],[0,∞))h∈C([0,1],[0,∞)) is not identically zero on any subinterval of [0,1][0,1]. Our main results demonstrate the existence of continua of positive solutions of the above problem.
Keywords :
Global continuation principle of Leray–Schauder , Continuum , Bifurcation , positive solutions , Multi-point boundary value problems
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858806
Link To Document :
بازگشت