Title of article :
Nonsmooth critical point theory on closed convex sets and nonlinear hemivariational inequalities Original Research Article
Author/Authors :
Sophia Th. Kyritsi، نويسنده , , Nikolaos S. Papageorgiou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
31
From page :
373
To page :
403
Abstract :
In this paper we develop a critical point theory for nonsmooth locally Lipschitz functionals defined on a closed, convex set extending this way the work of Struwe (Variational Methods, Springer, Berlin, 1990). Through a deformation result, we obtain minimax principles producing critical points. Then we use the theory to obtain positive and negative solutions of nonlinear and semilinear hemivariational inequalities. In this context we improve a result on positive solutions for semilinear elliptic problems due to Nirenberg (Variational methods in nonlinear problems, in: Topics in Calculus of Variations, Lecture Notes in Mathematics, vol. 1365, Springer, Berlin, 1987).
Keywords :
pp-Laplacian , Higher eigenvalues , positive solution , principal eigenvalue , Deformation result , Rayleigh quotient , critical point , critical value , Hemivariational inequality , Locally Lipschitz function , subdifferential , upper solution , lower solution
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858870
Link To Document :
بازگشت