Title of article :
A generalized-degree homotopy yielding global bifurcation results Original Research Article
Author/Authors :
Stewart C. Welsh، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
12
From page :
89
To page :
100
Abstract :
We study the nonlinear eigenvalue problem View the MathML sourceF(x,λ)=Ax-∑j=1kλjBjx-R(x,λ)=0 where F:X×R→YF:X×R→Y with X and Y Hilbert spaces such that X⊆YX⊆Y; i.e., X is imbedded in YY. It is shown that λ0=0λ0=0 is a global bifurcation point of the eigenvalue problem provided: a standard transversality condition is satisfied, the dimension of the null space of A is an odd number and each View the MathML sourceBj,j=1,2,…,k, is a positive operator on the finite-dimensional null space of AA. We apply the theory to prove that λ=0λ=0 is a global bifurcation point of the periodic boundary-value problem -x″(t)+λx(t)+λ2x′(t)+f(t,x(t),x′(t),x″(t))-x″(t)+λx(t)+λ2x′(t)+f(t,x(t),x′(t),x″(t)); x(0)=x(1),x′(0)=x′(1)x(0)=x(1),x′(0)=x′(1).
Keywords :
Fréchet derivative , Global bifurcation point , A-proper operators , generalized topological degree , nonlinear eigenvalue problem , Fredholm operator of index zero
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
858935
Link To Document :
بازگشت