Title of article :
Concerning the “terra incognita” between convergence regions of two Newton methods
Original Research Article
Author/Authors :
Ioannis K. Argyros، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
The majorizing principle is used to show local and semilocal convergence of Newton methods to a locally unique solution of a nonlinear operator in a Banach space, when the Fréchet derivative of the operator involved satisfies a center-Hölder and a Hölder continuity condition. Then we investigate an unknown area (“terra incognita”) between the convergence regions of Newtonʹs method, and the corresponding modified Newtonʹs method. Our approach compares favorably with other corresponding ones in this direction.
Keywords :
Majorizing principle , Convergence region/radius , Newtonיs method , Modified Newtonיs method , Banach space , H?lder/Lipschitz continuity , Fréchet-derivative
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications