Author/Authors :
M.R. Grossinho، نويسنده , , F.M. Minh?s، نويسنده , , A.I. Santos
، نويسنده ,
Abstract :
In this paper, we present existence and location results for the third-order separated boundary value problems
u‴(t)=f(t,u(t),u′(t),u″(t)),u‴(t)=f(t,u(t),u′(t),u″(t)),
Turn MathJax on
with the boundary conditions
View the MathML sourceu(a)=A,u″(a)=B,u″(b)=C
Turn MathJax on
or
View the MathML sourceu(a)=A,c1u′(a)-c2u″(a)=B,c3u′(b)+c4u″(b)=C,
Turn MathJax on
with c1,c2,c3,c4∈R+c1,c2,c3,c4∈R+ and A,B,C∈RA,B,C∈R.
We assume f:[a,b]×R3→Rf:[a,b]×R3→R is a continuous function satisfying one-sided Nagumo-type condition which allows an asymmetric unbounded behaviour. The arguments used concern Leray–Schauder degree and lower and upper solution techniques.
Keywords :
Third-order separated boundary value problems , One-sided Nagumo condition , lower and upper solutions , a priori estimates , Leray–Schauder degree