Title of article :
On the average number of level crossings of certain Gaussian random polynomials Original Research Article
Author/Authors :
S. Rezakhah، نويسنده , , S. Shemehsavar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
13
From page :
555
To page :
567
Abstract :
We study a random algebraic polynomial View the MathML sourceQn(x)=∑i=0nAixi, where the coefficients A0,A1,…A0,A1,… form a sequence of centred Gaussian random variables. Moreover, we assume that the increments Δj=Aj-Aj-1Δj=Aj-Aj-1, j=0,1,2,…j=0,1,2,… are independent, assuming A-1=0A-1=0. The coefficients can be considered as nn consecutive observations of a Brownian motion. We obtain the asymptotic behaviour of the expected number of times that such a random polynomial assumes the real value KK, where KK is any non-zero real constant. It is shown that the results are valid even for K→∞K→∞, as long as K=o(n1/4)K=o(n1/4).
Keywords :
random algebraic polynomial , Number of real zeroes , Level crossings , Expected density , Brownian motion
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2005
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859155
Link To Document :
بازگشت