Title of article :
Harnack inequality for harmonic functions relative to a nonlinear image-homogeneous Riemannian Dirichlet form
Original Research Article
Author/Authors :
Marco Biroli، نويسنده , , Paola Vernole، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
We consider a Riemannian (p-homogeneous) Dirichlet functional
Φ(u)=∫Xμ(u)(dx)Φ(u)=∫Xμ(u)(dx)
Turn MathJax on
(p>1p>1) defined on D, where D is a dense subspace of Lp(X,m)Lp(X,m) and X is a locally compact Hausdorff topological space endowed with the distance d connected with Φ(u)Φ(u) (see Section 2 for the definitions). We denote by View the MathML sourcea(u,v)=∫Xμ˜(u,v)(dx) the Dirichlet form related to Φ(u)Φ(u). We prove a Harnack type inequality for positive harmonic function relative to the form a(u,v)a(u,v); as a consequence we obtain also the Hölder continuity of harmonic function relative to the form a(u,v)a(u,v).
Keywords :
Harnack inequality , Nonlinear elliptic problems , Nonlinear potential theory
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications