Title of article :
A posteriori stopping rule for regularized fixed point iterations Original Research Article
Author/Authors :
Anatoly Bakushinsky، نويسنده , , Alexandra Smirnova، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
7
From page :
1255
To page :
1261
Abstract :
Iteratively regularized fixed-point iteration scheme xn+1=xn-αn{F(xn)-fδ+εn(xn-x0)}xn+1=xn-αn{F(xn)-fδ+εn(xn-x0)} Turn MathJax on combined with the generalized discrepancy principle View the MathML source∥F(xN)-fδ∥2⩽τδ<∥F(xn)-fδ∥2,0⩽n1, Turn MathJax on for solving nonlinear operator equation F(x)=fF(x)=f in a Hilbert space is studied in the paper. It is shown that if FF is monotone and Lipschitz-continuous the sequence {N(δ)}{N(δ)} is admissible, i.e. equation(1) View the MathML sourcelimδ→0∥xN(δ)-x*∥=0, Turn MathJax on where x*x* is a solution to F(x)=fF(x)=f.
Keywords :
Discrepancy principle , Ill-posed problem , Regularization
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2006
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859255
Link To Document :
بازگشت