Title of article :
Solvability of the Cauchy problem of nonlinear beam equations in Besov spaces Original Research Article
Author/Authors :
Ai Guo، نويسنده , , Shangbin Cui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
23
From page :
802
To page :
824
Abstract :
In this paper we study solvability of the Cauchy problem of the nonlinear beam equation View the MathML source∂t2u+△2u=±up with initial data in Besov spaces. We prove that, for any 1≤q<∞1≤q<∞, the Cauchy problem of this equation is locally well-posed in the Besov spaces View the MathML sourceḂ2,qsp(Rn) and View the MathML sourceB2,qs(Rn), where View the MathML sourcesp=n2−4p−1 and s>sps>sp, and globally well-posed in these spaces if initial data are small. Moreover we obtain scattering results in View the MathML sourceḂ2,qsp(Rn).
Keywords :
Beam equations , Cauchy problem , Well-posedness , Besov space
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2006
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859403
Link To Document :
بازگشت