Title of article :
Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent Original Research Article
Author/Authors :
Teodora-Liliana Dinu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
11
From page :
1414
To page :
1424
Abstract :
We establish the existence of an entire solution for a class of stationary Schrödinger equations with subcritical discontinuous nonlinearity and lower bounded potential that blows up at infinity. The abstract framework is related to Lebesgue–Sobolev spaces with variable exponent. The proof is based on the critical point theory in the sense of Clarke and we apply Chang’s version of the Mountain Pass Lemma without the Palais–Smale condition for locally Lipschitz functionals. Our result generalizes in a nonsmooth framework a result of Rabinowitz [P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. (ZAMP) 43 (1992) 270–291] on the existence of ground-state solutions of the nonlinear Schrödinger equation.
Keywords :
Schr?dinger equation , critical point , Entire solution , Lipschitz functional , Clarke generalized gradient
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2006
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859441
Link To Document :
بازگشت