Title of article :
The Neumann problem for the image-Laplacian and the Monge–Kantorovich mass transfer problem Original Research Article
Author/Authors :
J. Garcia Azorero، نويسنده , , J.J. Manfredi، نويسنده , , I. Peral، نويسنده , , J.D. Rossi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
18
From page :
349
To page :
366
Abstract :
We consider the natural Neumann boundary condition for the ∞∞-Laplacian. We study the limit as p→∞p→∞ of solutions of −Δpup=0−Δpup=0 in a domain ΩΩ with |Dup|p−2∂up/∂ν=g|Dup|p−2∂up/∂ν=g on ∂Ω∂Ω. We obtain a natural minimization problem that is verified by a limit point of {up}{up} and a limit problem that is satisfied in the viscosity sense. It turns out that the limit variational problem is related to the Monge–Kantorovich mass transfer problems when the measures are supported on ∂Ω∂Ω.
Keywords :
Neumann boundary conditions , Quasilinear elliptic equations
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859523
Link To Document :
بازگشت