Title of article :
Finite fractal dimension of pullback attractors for non-autonomous 2D Navier–Stokes equations in some unbounded domains Original Research Article
Author/Authors :
José A. Langa، نويسنده , , G. ?ukaszewicz، نويسنده , , J. Real، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
15
From page :
735
To page :
749
Abstract :
We study the asymptotic behaviour of non-autonomous 2D Navier–Stokes equations in unbounded domains for which a Poincaré inequality holds. In particular, we give sufficient conditions for their pullback attractor to have finite fractal dimension. The existence of pullback attractors in this framework comes from the existence of bounded absorbing sets of pullback asymptotically compact processes [T. Caraballo, G. Łukaszewicz, J. Real, Pullback attractors for asymptotically compact nonautonomous dynamical systems, Nonlinear Anal. 64 (3) (2006) 484–498]. We show that, under suitable conditions, the method of Lyapunov exponents in [P. Constantin, C. Foias, R. Temam, Attractors representing turbulent flows, Mem. Amer. Math. Soc. 53 (1984) [5]] for the dimension of attractors can be developed in this new context.
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859552
Link To Document :
بازگشت