Title of article :
Decay rates of solutions to the Cauchy problem for dissipative nonlinear evolution equations Original Research Article
Author/Authors :
Zhiyong Zhang، نويسنده , , Lizhi Ruan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
24
From page :
890
To page :
913
Abstract :
In this paper, we study the global existence and the asymptotic behavior of the solutions to the Cauchy problem for the following nonlinear evolution equations with ellipticity and dissipative effects equation(E) View the MathML source{ψt=−(1−α)ψ−θx+αψxx,θt=−(1−α)θ+νψx+(ψθ)x+αθxx, Turn MathJax on with initial data equation(I) View the MathML source(ψ,θ)(x,0)=(ψ0(x),θ0(x))→(ψ±,θ±)as x→±∞, Turn MathJax on where αα and νν are positive constants such that α<1α<1, ν<α(1−α)ν<α(1−α). Through constructing a correct function View the MathML sourceθˆ(x,t) defined by (2.13) and using the energy method, we show supx∈R(|(ψ,θ)(x,t)|+|(ψx,θx)(x,t)|)→0supx∈R(|(ψ,θ)(x,t)|+|(ψx,θx)(x,t)|)→0 as t→∞t→∞ and the solutions decay with exponential rates. The same problem was studied by Tang and Zhao [S.Q. Tang, H.J. Zhao, Nonlinear stability for dissipative nonlinear evolution equations with ellipticity, J. Math. Anal. Appl. 233 (1999) 336–358] for the case of (ψ±,θ±)=(0,0)(ψ±,θ±)=(0,0).
Keywords :
Correct function , a priori estimates , Decay rates , energy method
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859562
Link To Document :
بازگشت