Title of article :
Subcritical perturbations of a singular quasilinear elliptic equation involving the critical Hardy–Sobolev exponent Original Research Article
Author/Authors :
R.B. Assunç?o، نويسنده , , P.C. Carri?o، نويسنده , , O.H. Miyagaki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
1351
To page :
1364
Abstract :
In this work we improve some known results for a singular operator and also for a wide class of lower-order terms by proving a multiplicity result. The proof is made by applying the generalized mountain-pass theorem due to Ambrosetti and Rabinowitz. To do this, we show that the minimax levels are in a convenient range by combining a special class of approximating functions, due to Gazzola and Ruf, with the concentrating functions of the best Sobolev constant.
Keywords :
Critical exponents and degenerate problems , Singular perturbations , variational methods
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859593
Link To Document :
بازگشت