Title of article :
Global Cauchy problem for the Ostrovsky equation
Original Research Article
Author/Authors :
J. Pedro Isaza، نويسنده , , Jorge Mejia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
In this article we consider the initial value problem for the Ostrovsky equation:
View the MathML source∂tu−∂x3u∓∂x−1u+u∂xu=0,x∈R,t∈R,
Turn MathJax on
u(x,0)=u0(x),u(x,0)=u0(x),
Turn MathJax on
with initial data in Sobolev spaces Hs(R)Hs(R). Using Bourgain spaces, we prove that the problem is globally well-posed for View the MathML sources>−310 for both signs in the equation.
Keywords :
Global solutions , Nonlinear dispersive equations
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications