Title of article :
Global Cauchy problem for the Ostrovsky equation Original Research Article
Author/Authors :
J. Pedro Isaza، نويسنده , , Jorge Mejia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
22
From page :
1482
To page :
1503
Abstract :
In this article we consider the initial value problem for the Ostrovsky equation: View the MathML source∂tu−∂x3u∓∂x−1u+u∂xu=0,x∈R,t∈R, Turn MathJax on u(x,0)=u0(x),u(x,0)=u0(x), Turn MathJax on with initial data in Sobolev spaces Hs(R)Hs(R). Using Bourgain spaces, we prove that the problem is globally well-posed for View the MathML sources>−310 for both signs in the equation.
Keywords :
Global solutions , Nonlinear dispersive equations
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859826
Link To Document :
بازگشت