Title of article :
On the Dirichlet problem for the harmonic vector fields equation Original Research Article
Author/Authors :
Elisabetta Barletta، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
16
From page :
1831
To page :
1846
Abstract :
We show that any harmonic (with respect to the Bergman metric) vector field tangent to the Levi distribution of the foliation by level sets of the defining function φ(z)=−K(z,z)−1/(n+1)φ(z)=−K(z,z)−1/(n+1) of a strictly pseudoconvex bounded domain Ω⊂CnΩ⊂Cn which is smooth up to the boundary must vanish on ∂Ω∂Ω. If n≠5n≠5 and uTuT is a harmonic vector field with View the MathML sourceu∈C2(Ω¯) then u|∂Ω=0u|∂Ω=0.
Keywords :
Harmonic vector field , Bergman metric , Dirichlet problem
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859858
Link To Document :
بازگشت