Title of article :
A generalization of the Banach contraction principle with high order of convergence of successive approximations Original Research Article
Author/Authors :
Petko D. Proinov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
9
From page :
2361
To page :
2369
Abstract :
In this paper, we present the following generalization of the Banach contraction principle. Let T:D⊂X→XT:D⊂X→X be a continuous operator on a complete metric space (X,d)(X,d) satisfying View the MathML sourced(Tx,T2x)≤φ(d(x,Tx))for all x∈D,Tx∈D with d(x,Tx)∈J, Turn MathJax on where J⊂R+J⊂R+ is an interval containing 0, φ:J→Jφ:J→J is a gauge function of order r≥1r≥1 on JJ in the sense that φ(0)=0,ϕ(t)/trφ(0)=0,ϕ(t)/tr is nondecreasing on J∖{0}J∖{0} and ϕ(t)
Keywords :
Semilocal convergence , Newton method , Iterative methods , fixed point theorems , Gauge functions
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859905
بازگشت