Title of article :
Dynamics for a type of general reaction–diffusion model
Original Research Article
Author/Authors :
Xiao Wang، نويسنده , , Zhixiang Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
In this paper, we discuss the following reaction–diffusion model which is a general form of many population models
equation(∗)
View the MathML source∂u(t,x)∂t=△u(t,x)−δu(t,x)+f(u(t−τ,x)).
Turn MathJax on
We study the oscillatory behavior of solutions about the positive equilibrium KK of system (∗) with Neumann boundary conditions. Sufficient and necessary conditions are obtained for global attractivity of the zero solution and acceptable conditions are established for the global attractivity of KK. These results improve and complement existing results for system (∗) without diffusion. Moreover, when these results are applied to the diffusive Nicholson’s blowflies model and the diffusive model of Hematopoiesis, some new results are obtained for the latter.
Keywords :
Oscillation , Reaction–diffusion equation , Global attractivity
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications