Title of article :
The monotone method for Neumann functional differential equations with upper and lower solutions in the reverse order Original Research Article
Author/Authors :
Daqing Jiang، نويسنده , , Ying Yang، نويسنده , , Jifeng Chu، نويسنده , , Donal O’Regan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
2815
To page :
2828
Abstract :
In this paper, we show that the monotone technique produces two monotone sequences that converge uniformly to extremal solutions of second order functional differential equations and ϕϕ-Laplacian equations with Neumann boundary value conditions. Moreover, we obtain existence results assuming upper and lower solutions in the reverse order.
Keywords :
Neumann boundary value problem , upper and lower solutions , Anti-maximum comparison principle , Monotone iterative technique
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2007
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
859939
Link To Document :
بازگشت