Title of article :
Blow-up and global solutions for nonlinear reaction–diffusion equations with Neumann boundary conditions Original Research Article
Author/Authors :
Juntang Ding، نويسنده , , Shengjia Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
507
To page :
514
Abstract :
The type of problem under consideration is View the MathML source{((1+u)lnα(1+u))t=∇⋅(lnσ(1+u)∇u)+(1+u)lnβ(1+u),in D×(0,T),∂u∂n=0,on ∂D×(0,T),u(x,0)=u0(x)>0,in D̄, Turn MathJax on where D⊂RND⊂RN is a bounded domain with smooth boundary ∂D∂D, N≥2N≥2. It is proved that if β−1>σ≥α≥0β−1>σ≥α≥0, the positive solution u(x,t)u(x,t) blows up globally in View the MathML sourceD̄, whereas if 0≤β≤σ≤α−10≤β≤σ≤α−1, the positive solution u(x,t)u(x,t) is global solution. Furthermore, an upper bound of the “blow-up time”, an upper estimate of the “blow-up rate”, and an upper estimate of the global solutions are given.
Keywords :
Nonlinear reaction–diffusion equations , blow-up solutions , Global solutions
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860039
Link To Document :
بازگشت