Title of article :
On maximal element theorems, variants of Ekeland’s variational principle and their applications
Original Research Article
Author/Authors :
Lai-Jiu Lin، نويسنده , , Wei-Shih Du، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In this paper, we establish several different versions of generalized Ekeland’s variational principle and maximal element theorem for ττ-functions in ≲≲ complete metric spaces. The equivalence relations between maximal element theorems, generalized Ekeland’s variational principle, generalized Caristi’s (common) fixed point theorems and nonconvex maximal element theorems for maps are also proved. Moreover, we obtain some applications to a nonconvex minimax theorem, nonconvex vectorial equilibrium theorems and convergence theorems in complete metric spaces.
Keywords :
Generalized Caristi’s (common) fixed point theorem , Generalized Ekeland’s variational principle , maximal element , Fitting function , Nonconvex minimax theorem , ??-function , Convergence theorem , Nonconvex maximal element theorems for maps , Nonconvex vectorial equilibrium theorem
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications