Title of article :
Superlinear systems of second-order ODE’s Original Research Article
Author/Authors :
Djairo G. De Figueiredo، نويسنده , , Pedro Ubilla، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
1765
To page :
1773
Abstract :
We discuss the existence of positive solutions of the system View the MathML source−u″=f(t,u,v,u′,v′)in (0,1), Turn MathJax on View the MathML source−v″=g(t,u,v,u′,v′)in (0,1), Turn MathJax on u(0)=u(1)=v(0)=v(1)=0u(0)=u(1)=v(0)=v(1)=0 Turn MathJax on where the nonlinearities ff and gg satisfy a superlinearity condition at both 0 and ∞∞. Our main result is the proof of a priori bounds for the eventual solutions. As an application, we consider the Dirichlet problem in an annulus for systems of semilinear elliptic equations with nonlinearities depending on the gradient as well. As a second application, we consider fourth-order elastic beam equations with dependence also on the derivatives u′,u″,u‴u′,u″,u‴.
Keywords :
Elliptic systems , Annular domains , fixed points , Positive radial solutions , topological degree
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860139
Link To Document :
بازگشت