Title of article :
Exponential stability for wave equations with non-dissipative damping Original Research Article
Author/Authors :
Jaime E. Mu?oz Rivera، نويسنده , , Reinhard Racke، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
21
From page :
2531
To page :
2551
Abstract :
We consider the nonlinear wave equation utt−σ(ux)x+a(x)ut=0utt−σ(ux)x+a(x)ut=0 in a bounded interval (0,L)⊂R1(0,L)⊂R1. The function aa is allowed to change sign, but has to satisfy View the MathML sourcea¯=1L∫0La(x)dx>0. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system for: (I) possibly large ‖a‖L∞‖a‖L∞ with small View the MathML source‖a(⋅)−a¯‖L2, and (II) a class of pairs (a,L)(a,L) with possibly negative moment View the MathML source∫0La(x)sin2(πx/L)dx. Estimates for the decay rate are also given in terms of View the MathML sourcea¯. Moreover, we show the global existence of smooth, small solutions to the corresponding nonlinear system if, additionally, the negative part of aa is small enough.
Keywords :
Indefinite damping , Exponential stability , Wave equation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860206
Link To Document :
بازگشت