Title of article :
Constant-sign and sign-changing solutions for nonlinear eigenvalue problems
Original Research Article
Author/Authors :
Siegfried Carl، نويسنده , , Dumitru Motreanu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We prove the existence of multiple constant-sign and sign-changing solutions for a nonlinear elliptic eigenvalue problem under Dirichlet boundary condition involving the pp-Laplacian. More precisely, we establish the existence of a positive solution, of a negative solution, and of a nontrivial sign-changing solution when the eigenvalue parameter λλ is greater than the second eigenvalue λ2λ2 of the negative pp-Laplacian, extending results by Ambrosetti–Lupo, Ambrosetti–Mancini, and Struwe. Our approach relies on a combined use of variational and topological tools (such as, e.g., critical points, Mountain-Pass theorem, second deformation lemma, variational characterization of the first and second eigenvalue of the pp-Laplacian) and comparison arguments for nonlinear differential inequalities. In particular, the existence of extremal nontrivial constant-sign solutions plays an important role in the proof of sign-changing solutions.
Keywords :
Mountain-pass theorem , Second deformation lemma , Sign-changing solutions , Extremal constant-sign solutions , nonlinear eigenvalue problem , critical points , pp-Laplacian
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications