Title of article :
Asymmetric type II periodic motions for nonlinear impact oscillators
Original Research Article
Author/Authors :
Yurong Li، نويسنده , , Zhengdong Du، نويسنده , , Weinian Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
In this paper a general class of nonlinear impact oscillators is considered for Type II periodic motions. This system can be used to model an inverted pendulum impacting on rigid walls under external periodic excitation. The unperturbed system possesses a pair of homoclinic cycles and three separate families of periodic orbits inside and outside the homoclinic cycles via the identification given by the impact law. By approximating the Poincaré map to O(ε)O(ε) directly, a general method of Melnikov type for detecting the existence of asymmetric Type II subharmonic orbits outside the homoclinic cycles is presented.
Keywords :
Subharmonic bifurcation , Poincaré map , Non-smooth system , Melnikov method , Impact oscillator
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications