Title of article :
Local and global bifurcation in periodic scalar ODEs
Original Research Article
Author/Authors :
Jose Luis Bravo-Cabrera، نويسنده , , Manuel Fern?ndez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Following the lines of Yu. Ilyashenko and W. Li, we propose a definition of local and global bifurcations for the family of differential equations x′=f(t,x,λ)x′=f(t,x,λ), where f∈C(R3)f∈C(R3) is locally Lipschitz continuous with respect to xx, and TT-periodic in tt. Then, we prove that a value of the parameter λλ is a global bifurcation value if and only if there exists a local bifurcation point (including bifurcation points at infinity) for this value of the parameter.
Keywords :
Bifurcation , Periodic solutions
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications